2016 for the first quasicrystal Icosahedrite ?
(
http://www.mindat.org/min-40647.html)
or decagonite?
(
http://www.mindat.org/min-46637.html)
->
http://www.strahlen.org/forum/index.php/topic,11566.0.html
Better: Tinnunculite... I really want to read that story...
http://www.mindat.org/min-7337.html versus
http://www.mindat.org/min-47018.htmlMineral of the year
https://ima-mineralogy.org/Min_Year.htm2016The International Mineralogical Association is pleased to announce that the Mineral of the Year award for 2016 goes to merelaniite, Mo4Pb4VSbS15.
This mineral was discovered in collector specimens from the Merelani region in northeastern Tanzania, and investigated by John A. Jaszczak (Michigan Technological University, Houghton, USA), Michael S. Rumsey (Natural History Museum, London, UK), Luca Bindi (Università di Firenze, Florence, Italy), Stephen A. Hackney (MTU), Michael A. Wise (National Museum of Natural History, Washington, USA), Chris J. Stanley (NHM), and John Spratt (NHM). Merelaniite, whose unusual whisker-like crystals were initially mistaken for molybdenite, is actually a new member of the cylindrite group (Jaszczak et al. 2016). The new species is remarkable not only for its morphology, which is reminiscent of slender, partially unwound microscopic “scrolls”, or the structure composed of alternating pseudo-tetragonal (PbS-type) and pseudo-hexagonal (MoS2-type) layers, but also for the fact that it comes from the famous mining area that has produced the gemstone tanzanite (vanadium-bearing blue zoisite) for 50 years. Other unusual minerals found in association with merelaniite are well-crystallized wurtzite and alabandite, which represent just one evolutionary stage in the complex metamorphic history of the Merelani deposits. We would like to congratulate John Jaszczak and his co-authors on this award and encourage the readers to learn more about merelaniite from theiropen-access article in Minerals (
http://www.strahlen.org/forum/index.php/topic,11590.msg102955.html#msg102955).
The closest runner-ups to the winner were the Pb-Cu-Te oxysalt andychristyite (Kampf et al. 2016a), and the mineral vanarsite containing As-V polyanions (Kampf et al. 2016b).
References
Jaszczak JA, Rumsey MS, Bindi L, Hackney SA, Wise MA, Stanley CJ, Spratt J (2016) Merelaniite, Mo4Pb4VSbS15, a new molybdenum-essential member of the cylindrite group, from the Merelani tanzanite deposit, Lelatema Mountains, Manyara Region, Tanzania. Minerals 6:115.
Kampf AR, Cooper MA, Mills SJ, Housley RM, Rossman GR (2016a) Lead-tellurium oxysalts from Otto Mountain near Baker, California, USA: XII. Andychristyite, PbCu2+Te6+O5(H2O), a new mineral with hcp stair-step layers. Mineralogical Magazine 80: 1055-1065.
Kampf AR, Hughes JM, Nash BP, Marty J (2016b) Vanarsite, packratite, morrisonite, and gatewayite: four new minerals containing the [As3+V4+,5+12As5+6O51] heteropolyanion, a novel polyoxometalate cluster. Canadian Mineralogist 54: 145-162.
Figure caption: (top) a 0.73-mm long cylindrical whisker of merelaniite perched on green dravite; (bottom) scanning electron microscope image revealing the scroll-type structure of a 0.07-mm long segment of a merelaniite whisker.
Mineral of the year
https://ima-mineralogy.org/Min_Year.htm
2015The International Mineralogical Association (IMA) is pleased to announce that the Mineral of the Year award for 2015 goes to chanabayaite.
This mineral was discovered and studied by Nikita V. Chukanov of the Russian Academy of Sciences (Chernogolovka, Moscow Region) in collaboration with Natalia V. Zubkova (Moscow State University, MSU), Gerhard Möhn (Niedernhausen, Germany), Igor V. Pekov (MSU), Dmitry Yu. Pushcharovsky (MSU), and Aleksandr E. Zadov (NPP Teplokhim, Moscow).
Chanabayaite, Cu2(N3C2H2)Cl(NH3,Cl,H2O,[])4, is a new mineral species from Mt. Pabellón de Pica near the village of Chanabaya in the Tarapacá region of Chile (Chukanov et al. 2015). This unusual organometallic mineral does not only have a unique crystal structure that features the 1,2,4-triazolate anion (N3C2H2)-, but also acts as a “bridge” between the geosphere and the biosphere because its deep-blue crystals formed where guano deposits (the source of the C and N) came into contact with a chalcopyrite-bearing gabbro (which supplied the Cu). Chanabayaite formed by Na and Cl leaching from, and by the dehydration of, another triazolate-bearing natural compound – and potentially another new mineral – NaCu2Cl3[N3C2H2]2[NH3]2·4H2O (Zubkova et al. 2016).
Prof. Chukanov is known internationally both for his fascinating mineral discoveries (chanabayaite is but one of the 190 new species under Chukanov’s belt) and his prominent contributions to mineral spectroscopy [most recently, Chukanov (2014) and Chukanov and Chervonnyi (2016)]. A close runner-up to the winner was decagonite (Al71Ni24Fe5), the second naturally occurring quasicrystal from the Khatyrka CV3 carbonaceous chondrite (Bindi et al. 2015).
Sergey Krivovichev
IMA President
References
Bindi L and 12 coauthors (2015) Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. American Mineralogist 100: 764-772
Chukanov NV (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 1, 716 pp
Chukanov NV, Chervonnyi AD (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham–Heidelberg– Dordrecht–New York–London, 1,109 pp
Chukanov NV and 5 coauthors (2015) Chanabayaite, Cu2(N3C2H2)Cl(NH3,Cl,H2O,[])4, a new mineral containing triazolate anion. Geology of Ore Deposits 57: 712-720
Zubkova NV and 7 coauthors (2016) The crystal structure of the natural 1,2,4-triazolate compound NaCu2Cl3[N3C2H2]2[NH3]2·4H2O. Zeitschrift für Kristallographie 231: 47-54